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Recent studies in human neuroimaging, primate

neurophysiology, and developmental neuropsychology indicate

that the human ability for arithmetic has a tangible cerebral

substrate. The human intraparietal sulcus is systematically

activated in all number tasks and could host a central amodal

representation of quantity. Areas of the precentral and inferior

prefrontal cortex also activate when subjects engage in

mental calculation. A monkey analogue of these parieto-frontal

regions has recently been identified, and a neuronal

population code for number has been characterized. Finally,

pathologies of this system, leading to acalculia in adults or to

developmental dyscalculia in children, are beginning to be

understood, thus paving the way for brain-oriented

intervention studies.
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fMRI functional magnetic resonance imaging
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IPS intraparietal sulcus

Introduction
Number theory is a complex achievement of the human

mind. However, the core concept of arithmetic number is

simple, and all human cultures have at least a few words

for numbers. Seven years ago, I proposed the hypothesis

that ‘number sense’ is a basic capacity of the human brain

[1]: dedicated brain circuits, inherited from our evolu-

tionary history, are engaged in recognizing numerosity

(the number of objects in a set), and provide us with a

basic intuition that guides the acquisition of formal

arithmetic.

The purpose of the present review is to re-evaluate this

hypothesis in the light of recent findings in cognitive

neuroscience. Progress has been fast in several domains,

which are each reviewed in turn: neuroimaging of number

processing in humans, animal models of the cerebral

bases of number sense and developmental psychology

of basic numerical abilities and their disorders.

The intraparietal sulcus and number sense
Which brain areas are engaged when we compute 7 � 4 or

3 � 7? Modern neuroimaging confirms that a reproducible

set of parietal, prefrontal and cingulate areas is system-

atically activated (over and above the activations related

to stimulus identification and response output) whenever

subjects are asked to perform a calculation [2,3��,4–8]. A

recent meta-analysis indicates that the horizontal seg-

ment of the bilateral intraparietal sulcus (HIPS), in par-

ticular, is implicated in most neuroimaging studies of

number processing, with a reproducibility of 5–7 mm in

standardized coordinates [9�]. The precentral sulcus and

inferior frontal gyrus are also frequently co-activated [10].

Yet some studies have observed dissociations between

these areas; for instance, the inferior frontal activation

varies with the time pressure imposed, whereas the HIPS

activation varies with the number of operands involved

[11]. In the simplest experiments, which involve number

detection or comparison rather than more complex cal-

culation, the HIPS is sometimes the only region specif-

ically engaged [12��,13,14]. This suggests that the HIPS

region plays a central role in basic quantity representation

and manipulation, whereas other prefrontal areas might

serve a more supportive role in the management of

successive operations in working memory.

Simon et al. [3��] used functional magnetic resonance

imaging (fMRI) to characterize the anatomical organiza-

tion of calculation-related activations in the intraparietal

sulcus (IPS). When comparing multiple tasks of pointing,

grasping, saccades, attention movements, phoneme

detection, and subtraction, the depth of the HIPS was

found active solely during calculation. Importantly, this

study indicates that the HIPS activation during calcula-

tion cannot be explained away by spatial, attentional, eye

or finger movement artifacts, as these tasks activated a

distinct set of regions.

Other studies have found that neither calculation nor

working memory is needed to obtain parietal number-

related activations. For instance, Eger et al. [12��] merely

asked subjects to detect a specific target letter, digit and

color during fMRI. They then investigated whether the

presentation of non-target digits led to specific activa-

tions over and above those evoked by non-target letters

or colors. Only the left and right HIPS regions were

activated. Similarly, Naccache et al. [13] studied which

brain areas would show subliminal repetition priming
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for numbers. The left and right HIPS were the only

regions where fMRI activation to a visible target digit

was reduced when the digit was preceded by a flashed

presentation of the same number (the ‘prime’). This was

true even though the prime was masked and could not be

perceived or reported. This neuroimaging paradigm thus

adds to the recent behavioral evidence for subliminal

semantic priming of numbers [15–18].

In addition to demonstrating the automaticity of HIPS

activation, both the Eger and the Naccache studies indi-

cate that this region is amodal and not specialized for a

particular number notation: it reacts identically whether

numerals are spoken or written, and whether they appear

in Arabic notation or in spelled-out form [12��,13]. Pinel

et al. [14] studied the effects of number notation in a

number comparison task. In addition to notation, they

also manipulated the numerical distance between the

numbers to be compared, which is known to affect the

difficulty of the comparison operation. Behaviorally, nota-

tion and distance had additive effects on response times.

In fMRI, this additivity was reflected in the presence

of activity in two almost entirely distinct sets of regions.

In particular, the HIPS activation was affected solely by

the semantic distance between numbers, not by their

notation. The size of the numbers also modulates the

amount of activation in the HIPS region during a simple

addition task [10].

Although the bulk of neuroimaging work concerns calcu-

lation with Arabic numerals, HIPS activation, especially

in the right hemisphere, can be seen when subjects

estimate the numerosity of a set of concrete visual or

auditory objects [19]. Note that this deep intraparietal

activation related to numerical quantity must be carefully

distinguished from the more posterior dorsal parietal

activation observed whenever subjects count, which

relates to movements of spatial attention [9�]. Single-trial

analyses of fMRI activation during numerosity naming

[20�] indicate that the activation of this attentional system

is not needed to ‘subitize’ (perceive number of items at a

glance) at least for very small displays of up to three

objects. Subitizing and estimation could directly activate

approximate numerosity information in parallel across the

display, without requiring serial counting [21].

The HIPS region, which is thought to relate to quantity

processing, must also be distinguished from the angular

gyrus, which is also activated during some arithmetic

tasks such as multiplication, but might relate more to

linguistic than to quantity processing [9�]. Several stud-

ies have now found increased activation of the HIPS

region for tasks that emphasize quantity, including

approximate addition relative to retrieval of addition

facts [5] or subtraction compared to retrieval of multi-

plication facts [4], whereas the converse contrasts show

increased angular gyrus activation [22�]. This dissocia-

tion has also been replicated in a single case study of

disruption of calculation by electrical stimulation of

cortex during surgery of the left parietal lobe. Stimula-

tion of an anterior left IPS site disrupted subtraction and

stimulation of a more posterior left angular site disrupted

multiplication [23]. The angular gyrus is jointly activated

by other language tasks including digit naming [8] or

phoneme detection [3��]. These results are thus compa-

tible with a simple dichotomy according to which some

arithmetic operations are more dependent on language-

based fact retrieval, and others on quantity processing

on a mental ‘number line’ (Figure 1; [24,25]). Never-

theless, it is currently questioned whether or not this

dichotomy suffices to account for the range of acalculia

patients that have been reported: some cases strongly

support the notion of an internal number-line [26��]
and of quantity- versus language-dependent operations

[27–29], whereas others present challenges to this view

[9�,30,31,32�,33].

Taken together, neuroimaging studies converge to sug-

gest that the HIPS region holds an amodal and language-

independent semantic representation of numerical quan-

tity, which can be accessed through various symbolic or

non-symbolic codes. The location of this semantic region

outside the classical temporal areas for semantic proces-

sing might explain recent reports of selective sparing of

numbers in patients with severe semantic dementia

[34,35]. Yet, is this region specific for numbers? Or would

it also be engaged by quantitative processing of other

non-numerical dimensions such as physical size or bright-

ness? This issue is currently open to discussion and an

active focus for further research [36].

Number sense in the animal brain
The human number sense has roots in evolution. It has

long been known that many animal species can discri-

minate stimuli that differ only in numerosity. Consider-

ing only recent work, dolphins [37] and salamanders [38]

have joined macaques [39,40], tamarin monkeys [41�,42],

and lions [43] in the list of number-competent species,

which suggests that number sense is widespread. Impor-

tantly, several of these studies observed untrained beha-

vior, for instance showing that animals spontaneously

select the more numerous of two sets [38,40,41�,42,43].

Many studies also incorporated controls over non-

numerical variables [37,39,41�,42]. Finally, several stud-

ies that used trained animals tested them for general-

ization to new displays or to a new range of numbers

[37,39], thus demonstrating that animals possess more

knowledge of numbers than could have been inculcated

by training alone.

Although these studies indicate the presence of a repre-

sentation of numbers in animals, with behavioral charac-

teristics comparable to those of humans, they do not reveal

anything about the underlying neural substrate. However,
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the application of electrophysiological techniques has re-

cently led to groundbreaking progress in this area.

Sawamura and co-workers [44�] recorded from the super-

ior parietal lobule, in the anterior bank of the IPS. Two

macaque monkeys were trained to alternatively pull a

lever a fixed number of times (e.g. five), then turn it the

same number of times. In the time interval before making

the next movement, neuronal firing was tuned to ordinal

number. Each neuron fired preferentially after a certain

number of actions had been performed, with the prefer-

ence of different neurons being broadly distributed over

the range of numerosities 1–5. Unfortunately, this motor

paradigm does not easily lend itself to a systematic

variation of non-numerical parameters. Furthermore,

the cells did not appear to encode a purely abstract

representation of number, because many showed numer-

ical tuning only for one action, not for the other.

Nieder and Miller [45��,46��,47] recorded from both

lateral prefrontal cortex (PFC) and IPS. Two monkeys

were trained to perform a visual numerosity match-to-

sample task: they were shown a sequence of two succes-

sive visual displays, each comprising between 1 and 5

objects, and decided whether or not the numerosity of the

first set matched the numerosity of the second set. During

this task about a third of prefrontal neurons and up to 15%

of neurons in the depth of the IPS were found to be tuned

to numerosity, firing selectively after a certain numerosity

was presented. Stringent stimulus controls showed that

non-numerical variables could account neither for this

tuning nor for the monkey’s performance.

Although these studies represent only a first stab at

identifying the neural code for number, their findings

are highly informative and are entirely compatible with an

earlier neuronal network model of number processing

[48]. First, the latency of selective firing is significantly

shorter for parietal neurons (median 99 ms) than for

prefrontal neurons (median 116 ms). Furthermore, their

tuning strength is identical during stimulus presentation,

but stronger in PFC during the delay period. This sug-

gests that numerosity is first computed in the parietal

cortex, then transmitted and held on-line by prefrontal

delay activity. Second, the latency is identical for the

numerosities 1–5, incompatible with serial counting, but

in agreement with a parallel extraction of numerosity

across all retinal locations (see Dehaene and Changeux

[48]). Third, the tuning curves get broader as numerosity

increases (Weber’s law), and their shape is best modelled

as Gaussian over a logarithmic numerical scale. Those

properties can explain the distance and magnitude effects

that are found in many human and animal behavioral

paradigms, with both symbolic and non-symbolic stimuli

[49]. Future work should explore whether or not the

monkey areas where such neurons are found are true
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Schematic diagram of information-processing pathways involved in processing Arabic digits during various arithmetic tasks. This diagram, which

adapts to the number domain the classical multiple-route model of word reading, represents a simplified synthesis of similar diagrams in

references [24,25,28,69,70]. Although still insufficiently specified at both anatomical and functional levels, such diagrams might begin to explain

the various neuropsychological dissociations that are observed in human adult lesion cases (functional lesion sites are indicated with stars). Lesion 1,

associated with pure alexia, would create an inability to read numbers and to multiply, but not to compare or subtract [27,28]. Lesion 2,

associated with phonological dyslexia, would create an inability to read numbers, but not to multiply, subtract or compare [32�]. Lesions 3 and 4

might explain the frequent double dissociation between multiplication and subtraction in patients who can still read numbers [30,31,33], and the

presence or absence of associated deficits in comparison and non-symbolic numerosity processing [29]. Lesion 5 might explain residual
calculation abilities in patients who fail to produce the solution of arithmetic problems orally, but can still solve them in writing [33]. Abbreviations:

left AG, left angular gyrus; FuG, fusiform gyrus; HIPS, horizontal segment of intraparietal sulcus; IFG, inferior frontal gyrus.
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homologs of the human areas activated during mental

arithmetic (Figure 2), and whether or not numerosity

tuning can also be observed in humans.

Development and pathologies of number
sense
Adult human arithmetic also has its roots in development.

In recent years, claims of numerical competence in in-

fants have received important qualifications. First, some

tasks previously thought to tap numerical competence

have been shown to engage a representation of physical

amount rather than number [50,51]. Second, many tasks

are now known to depend on a special object-file system

limited to representing up to three objects [52,53]. Never-

theless, other studies have conclusively demonstrated a

genuine system of approximate numerosity representa-

tion, capable of coding a broad range of numerosities, in

the first year of life. For instance, six-month-old infants

can discriminate visual numerosities as large as 8 versus

16 with the characteristic signature of Weber’s law

[54,55�]. Five-month-olds already have the capacity to

attend to the number of sets in a display [56]. These

abilities develop within the first year: 11- but not 9-month-

olds exhibit knowledge of ordinality [57], and the distance

effect and the Weber fraction decrease continuously

throughout childhood [58,59].

Because of the difficulty of conducting imaging studies in

infants, the neural substrates of infant numerical abilities

remain unknown. Indirectly, however, studies of devel-

opmental dyscalculia can shed some light on this issue.

Some children with otherwise normal IQ, environment,

and education suffer severe deficits in arithmetic [60,61].

In specific subpopulations of dyscalculic children, recent

neuroimaging studies have revealed anatomical and func-

tional deficits of the IPS (Figure 3). Isaacs et al. [62]

compared the density of gray matter between two groups

of adolescents that were born at equally severe degrees of

prematurity, but differed in the presence or absence of an

arithmetic deficit. At the whole-brain level, only the left

IPS showed reduced gray matter in dyscalculia, at the

precise coordinates where activation is observed in nor-

mal subjects during arithmetic. Likewise, Molko et al.
[63�] studied a genetic condition, Turner’s syndrome

(X monosomy), in which basic deficits of arithmetic are

found [64,65]. They observed a disorganization of the

right IPS, which was of abnormal depth. Furthermore,

fMRI revealed reduced activation in the right IPS as a

function of number size during exact calculation. A sim-

ilar fMRI hypoactivation, extending to a broader parieto-

prefrontal network, was observed in two other genetic

conditions associated with dyscalculia, fragile X [66] and

velocardiofacial syndrome [67]. However, the proportion of

Figure 2
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Anatomical areas involved in quantity processing in humans and macaques. (a) Partially unfolded view of left and right human hemispheres, with

intraparietal and prefrontal activations identified in a recent meta-analysis of many fMRI studies of arithmetic [9�]. (b) Partially unfolded view of left
and right hemispheres of a macaque monkey; areas colored in yellow are those where Nieder and Miller [45��,46��,47] identified neurons tuned to

numerosity. Whereas the posterior parietal area in both species occupies a plausibly homologous location, much more distortion would be

needed to align the prefrontal areas. This figure was prepared with Caret software (http://brainmap.wustl.edu/resources/caretnew.html).

Abbreviations: CS, central sulcus; HIPS, horizontal intraparietal sulcus; VIP, ventral intraparietal area; 45,46, Brodmann areas 45 and 46.
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children with arithmetic deficits suffer from such a genetic

or birth-related brain dysfunction remains unknown.

Conclusions
The present review suggests that quantity-related brain

regions including the IPS are present early in evolution,

are laid down under partial genetic control, and play a

significant role in early numerical development, to the

extent that their disorganization can create a lifelong

impairment in arithmetic. The challenges for the future

involve first, understanding the homologies, but also

the differences, between the human and the macaque

number-related areas; second, understanding the global

coordination of these areas, not just their local coding

schemes; and third, using this knowledge to guide reha-

bilitation attempts in dyscalculia [68] and monitor pro-

gress with neuroimaging [22�].
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